Okay, here's some information about the functions f(x) = –x² + 3x + 5 and g(x) = x² + 2x, formatted in Markdown and including the specified links:
Given the functions f(x) = –x² + 3x + 5 and g(x) = x² + 2x, we can explore several concepts:
* **Function Evaluation**: We can evaluate each function for a specific input value. For example, f(2) = –(2)² + 3(2) + 5 = -4 + 6 + 5 = 7. Similarly, g(2) = (2)² + 2(2) = 4 + 4 = 8. More generally, we are substituting a value for 'x' to calculate the resulting output of the function. This is related to the concept of [function%20evaluation](https://www.wikiwhat.page/kavramlar/function%20evaluation).
* **Function Operations**: We can perform arithmetic operations on these functions, such as addition, subtraction, multiplication, and division. For instance, (f + g)(x) = f(x) + g(x) = (–x² + 3x + 5) + (x² + 2x) = 5x + 5. We can also subtract, leading to (f - g)(x) = f(x) - g(x) = (-x² + 3x + 5) - (x² + 2x) = -2x² + x + 5. These operations combine the two functions together. These ideas lead to discussions about [function%20operations](https://www.wikiwhat.page/kavramlar/function%20operations).
* **Finding Roots (Zeros)**: The roots or zeros of a function are the values of *x* for which f(x) = 0 or g(x) = 0. For f(x) = –x² + 3x + 5, we would need to solve the quadratic equation –x² + 3x + 5 = 0. For g(x) = x² + 2x, we can factor it as x(x + 2) = 0, which gives us roots x = 0 and x = -2. Solving for roots utilizes the [quadratic%20formula](https://www.wikiwhat.page/kavramlar/quadratic%20formula).
* **Vertex of a Parabola**: Both f(x) and g(x) are quadratic functions, meaning their graphs are parabolas. We can find the vertex of each parabola. For f(x), the x-coordinate of the vertex is given by -b/2a = -3/(2*(-1)) = 3/2. The y-coordinate is f(3/2) = -(3/2)² + 3(3/2) + 5 = -9/4 + 9/2 + 5 = 29/4. For g(x), the x-coordinate of the vertex is -2/(2*1) = -1. The y-coordinate is g(-1) = (-1)² + 2(-1) = 1 - 2 = -1. The vertex is a key feature when considering [parabola%20properties](https://www.wikiwhat.page/kavramlar/parabola%20properties).
* **Composition of Functions**: We can compose the functions, such as f(g(x)) or g(f(x)). For example, f(g(x)) = f(x² + 2x) = -(x² + 2x)² + 3(x² + 2x) + 5. The other composition can be calculated in a similar fashion. [Function%20composition](https://www.wikiwhat.page/kavramlar/function%20composition) enables creating more complex functions.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page